Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

نویسندگان

  • Phani Motamarri
  • M. R. Nowak
  • Kenneth W. Leiter
  • Jaroslaw Knap
  • Vikram Gavini
چکیده

We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of KohnSham density-functional theory (DFT). To this end, we develop an a priori mesh adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100− 200 fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000−fold—relative to linear finiteelements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn-Sham DFT problem. A comparative study of the computational efficiency of the proposed higherorder finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors. ∗Corresponding author

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-periodic finite-element formulation of Kohn–Sham density functional theory

We present a real-space, non-periodic, finite-element formulation for Kohn–Sham density functional theory (KS-DFT). We transform the original variational problem into a local saddle-point problem, and show its well-posedness by proving the existence of minimizers. Further, we prove the convergence of finite-element approximations including numerical quadratures. Based on domain decomposition, w...

متن کامل

Convergence study of the h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum mechanics

In this paper the h-adaptive partition-of-unity method and the hand hp-adaptive finite element method are applied to eigenvalue problems arising in quantum mechanics, namely, the Schrödinger equation with Coulomb and harmonic potentials, and the all-electron Kohn–Sham density functional theory. The partition-of-unity method is equipped with an a posteriori error estimator, thus enabling impleme...

متن کامل

All-electron Kohn-Sham density functional theory on hierarchic finite element spaces

Keywords: Density functional theory Kohn–Sham equations Finite elements All-electron calculations Nonlinear eigenvalue problem a b s t r a c t In this work, a real space formulation of the Kohn–Sham equations is developed, making use of the hierarchy of finite element spaces from different polynomial order. The focus is laid on all-electron calculations, having the highest requirement onto the ...

متن کامل

A subquadratic-scaling subspace projection method for large-scale Kohn-Sham density functional theory calculations using spectral finite-element discretization

We present a subspace projection technique to conduct large-scale Kohn-Sham density functional theory calculations using higher-order spectral finite-element discretization. The proposed method treats both metallic and insulating materials in a single framework, and is applicable to both pseudopotential as well as all-electron calculations. The key ideas involved in the development of this meth...

متن کامل

Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique

A finite element method with an adaptive mesh redistribution technique is presented for solving the Kohn-Sham equation. The mesh redistribution strategy is based on the harmonic mapping, and the movement of grid points is partially controlled by the monitor function that depends on the gradient of the electron density. Compared with fixed meshes, both efficiency and accuracy of the solution are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 253  شماره 

صفحات  -

تاریخ انتشار 2013